RAC/ROP GTPases and auxin signaling.
نویسندگان
چکیده
Auxin functions as a key morphogen in regulating plant growth and development. Studies on auxin-regulated gene expression and on the mechanism of polar auxin transport and its asymmetric distribution within tissues have provided the basis for realizing the molecular mechanisms underlying auxin function. In eukaryotes, members of the Ras and Rho subfamilies of the Ras superfamily of small GTPases function as molecular switches in many signaling cascades that regulate growth and development. Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions. Here, we discuss the advances made over the last decade that implicate RAC/ROPs as mediators for auxin-regulated gene expression, rapid cell surface-located auxin signaling, and directional auxin transport. We also describe experimental data indicating that auxin-RAC/ROP crosstalk may form regulatory feedback loops and theoretical modeling that attempts to connect local auxin gradients with RAC/ROP regulation of cell polarity. We hope that by discussing these experimental and modeling studies, this perspective will stimulate efforts to further refine our understanding of auxin signaling via the RAC/ROP molecular switch.
منابع مشابه
Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression.
The auxin indole-3-acetic acid is a key plant hormone essential for a broad range of growth and developmental processes. Here, we show that auxin activates Rac-like GTPases (referred to as Rac/Rop GTPases), and they in turn stimulate auxin-responsive gene expression. In particular, we show that overexpressing a wild-type tobacco Rac/Rop GTPase, NtRac1, and its constitutively active mutant form ...
متن کاملRAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins.
Auxin signaling relies on ubiquitin ligase SCF(TIR1)-mediated 26S proteasome-dependent proteolysis of a large family of short-lived transcription regulators, auxin/indole acetic acid (Aux/IAA), resulting in the derepression of auxin-responsive genes. We have shown previously that a subset of Rac GTPases is activated by auxin, and they in turn stimulate auxin-responsive gene expression. We show ...
متن کاملUpdate on the Regulation of Membrane Trafficking by ROP/RAC GTPases Regulation of Membrane Trafficking, Cytoskeleton Dynamics, and Cell Polarity by ROP/RAC GTPases
Rho of plants (ROP) proteins, also known as RAC proteins, are Rho-related GTPases that function as molecular switches in a multitude of signaling cascades involved in the regulation of the actin and microtubule cytoskeleton, of vesicle trafficking, and of plant responses to hormones, stresses, or light (Yang, 2002; Berken, 2006; Nibau et al., 2006; Yang and Fu, 2007). Rho GTPases are Ras-relate...
متن کاملRegulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases.
Rho of plants (ROP) proteins, also known as RAC proteins, are Rho-related GTPases that function as molecular switches in a multitude of signaling cascades involved in the regulation of the actin and microtubule cytoskeleton, of vesicle trafficking, and of plant responses to hormones, stresses, or light (Yang, 2002; Berken, 2006; Nibau et al., 2006; Yang and Fu, 2007). Rho GTPases are Ras-relate...
متن کاملFERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development.
Plant RHO GTPases (RAC/ROPs) mediate multiple extracellular signals ranging from hormone to stress and regulate diverse cellular processes important for polarized cell growth, differentiation, development, reproduction, and responses to the environment. They shuttle between the GDP-bound inactive state and the GTP-bound activated state and their activation is predominantly mediated by a family ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2011